a2 United States Patent

Lu et al.

US009443064B2

US 9,443,064 B2
Sep. 13, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(86)

87

(65)

(30)

Sep. 26, 2011

(1)

(52)

(58)

PROTECTING METHOD AND SYSTEM OF
JAVA SOURCE CODE

Inventors: Zhou Lu, Haidian District (CN);
Huazhang Zu, Haidian Distict (CN)

Assignee: Feitian Technologies Co., Ltd. (CN)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 250 days.
Appl. No.: 14/117,987
PCT Filed: Aug. 27, 2012

PCT No.:

§ 371 (e)(D),
(2), (4) Date:

PCT/CN2012/080616

Nov. 15, 2013

PCT Pub. No.: W02013/044709
PCT Pub. Date: Apr. 4, 2013

Prior Publication Data

US 2014/0195824 Al Jul. 10, 2014
Foreign Application Priority Data
2011 1 0288519

(CN)

Int. CL.

GO6F 11/30
GO6F 21/10
GO6F 21/50
GO6F 21/12
U.S. CL

CPC

(2006.01)
(2013.01)
(2013.01)
(2013.01)

GO6F 21/10 (2013.01); GO6F 21/123
(2013.01); GOGF 21/50 (2013.01)

Field of Classification Search

CPC GOGF 21/123; GOG6F 21/50

USPC .. 713/190

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,843,766 B2* 9/2014 Schwarz GOG6F 21/554
380/277

2003/0195856 Al* 10/2003 Bramhill GO6F 21/10
705/57

2004/0039926 Al* 2/2004 Lambert GOG6F 21/125
713/189

(Continued)

FOREIGN PATENT DOCUMENTS

CN 101814124 8/2010
CN 102043932 5/2011
(Continued)

Primary Examiner — Teshome Hailu

(74) Attorney, Agent, or Firm — Tarolli, Sundheim, Covell
& Tummino LLP

(57) ABSTRACT

The present disclosure discloses a protecting method and
system of Java source code. When a first initiating class is
invoked, the method comprises following steps, wherein the
first initiating class is an initiating class of Java program: the
first initiating class decrypts first cipher data to obtain a class
loader; the class loader reads second cipher data to the
memory and decrypts the second cipher data to obtain a first
class, wherein the first class is a class run by a Java virtual
machine, and the suffix of the first class is .class; the class
loader loads a second initiating class to the memory;
wherein the second initiating class is an original class in jar
packet of the Java program; and the class loader loads the
first class to the Java virtual machine so that the Java virtual
machine can invoke a main interface in the second initiating
class to run the Java program. The present disclosure can
protect Java source code and make it difficult to decompile
the Java source code.

10 Claims, 5 Drawing Sheets

A fist initiating cless reads first cipher deta in a

classloader.

fist cipher data to obtain first plain data, and defines the first plain data as a

memory and decrypts the

l

data as a first class.

‘The classloader reads second cipher dta in the memory and decrypts the
second cipher data to obtain secand plain data, and defines the second plain

]

The classloader loads a second initiating clsss in the memory.

l

‘The classloader loads the first class to & Java virt

to run Java program.

ual machine such that the

Java virtual machine can invoke a main interface in the second initiating class "

=D

.

US 9,443,064 B2

Page 2
(56) References Cited 2013/0005453 Al* 1/2013 Nguyen GO7F 17;32
463/29
U.S. PATENT DOCUMENTS
FOREIGN PATENT DOCUMENTS
2005/0130728 Al* 6/2005 Nguyen ... GO7F 17/32
463/16 CN 102360412 2/2012
2006/0035707 Al* 2/2006 Nguyen GO7F 17/32 P 2008-252798 10/2008
463/29 WO 2006134304 12/2006
2010/0205459 Al* 82010 Schwarz GOG6F 21/554
713/190 * cited by examiner

U.S. Patent Sep. 13,2016 Sheet 1 of 5 US 9,443,064 B2

Start

A first initiating class reads first cipher data in a memory and decrypts the
first cipher data to obtain first plain data, and defines the first plain dataasa "
classloader. St

Y

The classloader reads second cipher data in the memory and decrypts the
second cipher data to obtain second plain data, and defines the second plain _/8\2
data as a first class.

The classloader loads a second initiating class in the memory. N
S3

h

The classloader loads the first class to a Java virtual machine such that the
Java virtual machine can invoke a main interface in the second initiating class T
to run Java program. 34

End

Fig. 1

U.S. Patent Sep. 13,2016 Sheet 2 of 5 US 9,443,064 B2

Qart)

Invoke a dongle interface to search whether a dongle connected
to a computer exists, $1001

v

When the dongle connected to the computer is found by _/'*

searching, obtain key in the dongle. S1002
Y
Transfer a bvtecode file in the donele \'/SI\O 03

Encrypt the bytecode file by the key to obtain cipher data 1004

Y

invoke the dongle interface to obtain cipher data from the
dongle \/S:OOS

h 4

Add the cipher data to the jar packet of Java program to _/\
complete the encrvotign of the bvtecode file. S1006

End

Fig. 2

U.S. Patent Sep. 13,2016 Sheet 3 of 5 US 9,443,064 B2

=)

Invoke the dongle interface to search whether a dongle exists. +_

S2001

Y

When the dongle is found by searching, invoke the dongle interface J\
and transfer the cipher data in the dongle. 52002

h 4

Invoke the dongle interface and use the key stored in the dongle to T
decrypt the cipher data transferred in to obtain plain data. 52003

Invoke the dongle interface to obtain plain data.
S2004

Y

e

Fig. 3

U.S. Patent Sep. 13,2016 Sheet 4 of 5 US 9,443,064 B2

““““““ 101
invoke an initiating class of Java | -~
program {
I 102
Invoke a first interface of a first :F -
initiating class !
i
. V. ; 193 The java virtual machine invokes the | 129
The first interface invokes asecond | - main interface in the original class and
interface in the first initiating class starls Tun java program ;
! f
The second interface reads a first cipher 194
data, which is obtained by encryptinga | .- The java virtual machine uscs the first | 11?
bytecode file of a first classloader, to a classloader to load the defined class to
memory the java virtual machine |
4 1035 4
The first initiating class loads a first L N
dynarnic library in the memory o Thefifth interface invokes a defineclass | g
N interface of the java virtual machine and :)
} Y 106 | define the second cipher data as a class +
E The first mitiating class invokes the which ean be run by the java virtual |
E third i_nterface i_n _the first dynamic o machine
: library by Jl‘l!l technology P Successful
g o ¢ decrypti
| The first initiating class transfers the 107 | Teenp on 117

! —— e

Tt Tifth interface decz;;ﬁfs‘ e
" second cipher data -

i
| — —
i

address of the first cipher data, whichis |
obtained by encrypting the bytecode file i
of the first classloader, in the address to

a third interface - e \
3 oo L2
A %7 Jump |
"rrfé"éi"ﬂh*iﬁzéffaaé F6ads ASECOUUTIBIETT © 1 out of |
/,»’”fhe third interface™-.._ 108 | data, which is obtained by encrypting a Eprogramj
s "Ejecrypts the first cipher data™ .. i bytecode file with suffix of .class, in the e i~
7 which is obtained by encryptthe i MEOry.
». & . bytecode file ofthe first -~ !
FE T classloader ' s . _ , 13
& §§' e s i The fifth interface invokes asixth | .
@ Ny i Interface in the first classloader
— — I Successful E
Jump out of | | decryption ‘
program | Y . 109
e l—The third interface invokes a defineclass | Co 114
of the java virmal machine and definesaj - ‘ The fifth interface loads the eriginal | -~
first plain data as a the first classloader |~ ‘ initinting class to the memory i
which can be run by the java virtual b 7y ’
machine
Y 1o i3
.) The fourth interface invekes a fifth ey
The third u?terface invokes a fourth interface in the first classloader -
interface in the first classloader.
k
111
] The fourth interface reads a L/' The fourth interface reads original “%
configuration file in jar packet of jfava ?——ﬁ+ initiating class from the configuration "
program file

Fig.4

U.S. Patent

Sep. 13, 2016

Sheet 5 of 5

Invoking module 20

First processing module

US 9,443,064 B2

21

10
Encrypting . Decrypting
module 40 module 50
Second processing
module 30
Fig. 5
First processing module Encrypting module 24

Second processing
module 22

Decrypting module 25

Third processing
module 23

Storing module 26

First storing unit
261

Second storing unit|
262

US 9,443,064 B2

1
PROTECTING METHOD AND SYSTEM OF
JAVA SOURCE CODE

TECHNICAL FIELD

The disclosure relates to software protection field, and
specifically, to a protecting method and system of Java
source code.

BACKGROUND OF THE DISCLOSURE

Java language is an interpreted language. Java source
code is compiled to generate a bytecode file and the gener-
ated bytecode file is interpreted and executed in a Java
virtual machine. Because the bytecode file has strong self-
description, a lot of symbols and compiling information are
kept, which results in that Java source code can be easily
decompiled to source code which has strong readability,
therefore, gains obtained by working of developers might be
plagiarized or product of developers might be tampered.
With the popularization of Java language, Java is applied
widely in many field, the requirement for protecting Java
source code becomes more and more urgent.

In the prior art, Java source code is generally protected by
obfuscating code executing flow or hiding key information,
which makes the decompiled code difficult to understand
and makes the cost of cracking the source code to increase.
However, with the development of the anti-obfuscation
technology, purpose of protection can not be achieved by
obfuscation effectively.

For the problem that Java source code can be easily
decompiled in related art, no effective solution is provided
at present.

SUMMARY OF THE DISCLOSURE

The purpose of the present disclosure is providing a
protecting method and system of Java source code so as to
solve problem that Java source code can be easily decom-
piled.

In order to reach the purpose above, according to one
aspect of the present disclosure, a protecting method of Java
source code is provided.

According to the protecting method of Java source code,
when a first initiating class is invoked, the method comprises
following steps, wherein the first initiating class is an
initiating class of Java program: S1, the first initiating class
reading first cipher data to a memory, decrypting the first
cipher data to obtain first plain data, and defining the first
plain data as a class loader, wherein the first cipher data is
data obtained by encrypting the bytecode file of the class
loader; S2, the class loader reading second cipher data to the
memory, decrypting the second cipher data to obtain second
plain data, and defining the second plain data as a first class,
wherein the first class is a class which is run by a Java virtual
machine, and the suffix of the first class is .class; the second
cipher data is obtained by encrypting the bytecode file of the
first class; and S3, the class loader loading a second initi-
ating class to the memory, wherein the second initiating
class is an original class in jar packet of Java program; S4,
the class loader loading the first class to the Java virtual
machine so that the Java virtual machine can invoke a main
interface in the second initiating class, and run the Java
program.

Further, step S1 comprises: S11, the first initiating class
reading the first cipher data to the memory; S12, the first
initiating class loading a local first dynamic library to the

10

15

20

25

30

35

40

45

50

55

60

65

2

memory; S13, the first initiating class invoking a third
interface in the first dynamic library; S14, the first initiating
class transferring the address of the first cipher data in the
memory into the third interface in the first dynamic library;
S15, the third interface in the first dynamic library decrypt-
ing the first cipher data to obtain the first plain data; and S16,
the third interface in the first dynamic library invoking a
define class interface of the Java virtual machine to define
the first plain data as the class loader.

Further, step S11 comprises: S111, invoking a first inter-
face in the first initiating class; S112, the first interface in the
first initiating class invoking a second interface in the first
initiating class; and S113, the second interface in the first
initiating class reading the first cipher data to the memory.

Further, step S3 comprises: S31, the third interface in the
first dynamic library invoking a fourth interface in the class
loader; S32, the fourth interface in the class loader reading
a configuration file in jar packet of the Java program; S33,
the fourth interface in the class loader reading out the second
initiating class from the configuration file; S34, the fourth
interface in the class loader invoking a fifth interface in the
class loader; and S35, the fifth interface in the class loader
loading the second initiating class to the memory.

Further, step S2 comprises S21, the fifth interface of the
class loader invoking a sixth interface in the class loader;
S22, the sixth interface in the class loader reading the second
cipher data to the memory; S23, the fifth interface in the
class loader decrypting the second cipher data to obtain
second plain data; and S24, the fifth interface in the class
loader invoking the define class interface of the Java virtual
machine and defining the second plain data as the first class.

Further, decrypting the first cipher data and the second
cipher data in the following ways: S2001, invoking a dongle
interface to search whether a dongle exists; S2002, when the
dangle is found by searching, invoking the dongle interface
to transfer the cipher data into the dongle; S2003, invoking
the dongle interface to use the key stored in the dongle to
decrypt the cipher data transferred in to obtain plain data;
and S2004, invoking the dongle interface to obtain the plain
data.

In order to reach purpose above and according to one
aspect of the present disclosure, a protecting system of Java
source code is provided.

The protecting system of Java source code according to
the present disclosure comprises: a first processing module
comprising a first initiating class, wherein the first initiating
class is an initiating class of Java program; an invoking
module configured to invoke the first initiating class; a
second processing module comprising a class loader; an
encrypting module configured to encrypt the bytecode file of
the class loader to first cipher data and encrypting a bytecode
file of a first class to second cipher data, wherein the first
class is a class run by a Java virtual machine; and a
decrypting module configured to decrypt the first cipher data
to first plain data and decrypt the second cipher data to
second plain data, wherein the first initiating class is con-
figured to read the first cipher data to the memory, and
control the decrypting module to decrypt the first cipher data
to obtain the first plain data and define the first plain data as
the class loader; the class loader is configured to load a
second initiating class to the memory, read the second cipher
data to the memory, control the decrypting module to
decrypt the second cipher data and load the first class to the
Java virtual machine so that the Java virtual machine can
invoke a main interface of the second initiating class to run
the Java program, wherein the second initiating class is an
original class of jar packet of the Java program.

US 9,443,064 B2

3

Further, the first initiating class is further configured to
load a local first dynamic library to the memory, invoke a
third interface in the first dynamic library and transfer the
address of the first cipher data in the memory into the third
interface in the first dynamic library; wherein the third
interface in the first dynamic library is configured to decrypt
the first cipher data to obtain the first plain data, and invoke
a define class interface of the Java virtual machine to define
the first plain data as the class loader.

Further, the first initiating class comprises a first interface
and a second interface; the first interface in the first initiating
class is configured to invoke the second interface in the first
initiating class; the second interface in the first initiating
class is configured to read the first cipher data to the
memory.

Further, the class loader includes a fourth interface and a
fifth interface, wherein the fourth interface of the class
loader is configured to read a configuration file in the jar
packet of the Java program, read the second initiating class
out from the configuration file and invoke the fifth interface
in the class loader; the fifth interface in the class loader is
configured to load the second initiating class to the memory;
and the third interface in the first dynamic library is further
configured to invoke the fourth interface in the class loader.

Further, the class loader comprises a sixth interface,
wherein the sixth interface in the class loader is configured
to read the second cipher data to the memory; and the fifth
interface in the class loader is further configured to invoke
the sixth interface in the class loader, decrypt the second
cipher data to obtain the second plain data, and invoke the
define class interface of the Java virtual machine to define
the second plain data as the first class.

Further, the decrypting module comprises: a second
searching sub-module configured to invoke a dongle inter-
face to search whether a dangle exists; a second transferring-
in sub-module, configured to, when the dongle is found by
searching, invoke the dongle interface to transfer the cipher
data into the dongle; a first decrypting sub-module, config-
ured to invoke the dangle interface to use the key stored in
the dongle to decrypt the cipher data transferred in to obtain
plain data; and a third obtaining sub-module, configured to
invoke the dongle interface to obtain the plain data.

When a first initiating class, i.e. initiating class of Java
program, is invoked, the present disclosure provides a
protecting method of Java source code including following
steps: S1, the first initiating class reads first cipher data to a
memory, decrypt the first cipher data to obtain first plain
data, and define the first plain data as a class loader, wherein
the first cipher data is data obtained by encrypting the
bytecode file of the class loader; S2, the class loader reads
second cipher data to the memory, decrypt the second cipher
data to obtain second plain data, and define the second plain
data as a first class, wherein the first class is a class run by
a Java virtual machine, and the suffix of the first class is
.class, the second cipher data is data obtained by encrypting
the bytecode file of the first class; S3, the class loader loads
the second initiating class to the memory, wherein the
second initiating class is an original class in jar packet of
Java program; and S4, the class loader loads the first class
to the Java virtual machine so that the Java virtual machine
can invoke a main interface in the second initiating class to
run the Java program, the present solves problem that Java
source code can be easily decompiled and protection of Java
source code is realized.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are included to provide a
further understanding of the present disclosure and are

10

15

20

25

30

35

40

45

50

55

60

65

4

incorporated in and constitute a part of this specification; the
illustrated embodiments of the present disclosure, together
with the description, serve to explain the principles of the
present disclosure and are not be comprehended as consti-
tuting any limitation on the present disclosure. In the accom-
panying drawings,

FIG. 1 shows a protecting method of Java source code
provided by Embodiment 1;

FIG. 2 shows an encrypting method in the protecting
method of Java source code provided by Embodiment 1;

FIG. 3 shows a decrypting method in the protecting
method of Java source code provided by Embodiment 1;

FIG. 4 shows a protecting method of Java source code
provided by Embodiment 2;

FIG. 5 shows a protecting system of Java source code
provided by Embodiment 3; and

FIG. 6 shows a protecting system of Java source code
provided by Embodiment 4.

DETAILED DESCRIPTION OF THE PRESENT
INVENTION

It should be noted that the embodiments in the present
application and the characteristics of the embodiments can
be combined if no conflict is caused. The present disclosure
is described below in detail by reference to the accompa-
nying drawings in conjunction with embodiments.

Embodiment 1

FIG. 1 shows a protecting method of Java source code
provided by embodiment 1; when a initiating class of a Java
program, that is a first initiating class is invoked, and as
shown by FIG. 1, the protecting method includes following
step S1 to step S4:

S1, a first initiating class reads first cipher data to a
memory, decrypts the first cipher data to obtain first plain
data and defines the first plain data as a class loader; in this
case the first cipher data is obtained by encrypting a byte-
code file of the class loader;

S2, the class loader reads second cipher data in the
memory, decrypts the second cipher data to obtain second
plain data and defines the second plain data as a first class;
in this case the first class is a class executed by a Java virtual
machine and its suffix is .class, the second cipher data is
obtained by encrypting a bytecode file of the first class;

S3, the class loader loads a second initiating class in the
memory; in this case the second initiating class is an original
initiating class in jar packet of Java program;

S4, the class loader loads the first class to the Java virtual
machine in such way that the Java virtual machine can
invoke a main interface in the second initiating class and
execute the Java program.

In the present embodiment, the Java program is protected
by using the class loader and the class loader is encrypted so
that an attacker can not obtain the class loader of plain text,
which effectively prevents the source code from being
decompiled and protects the Java source code.

Preferably, step S1 includes following step S11 to step
S16:

S11, the first initiating class reads the first cipher data to
the memory.

S12, the first initiating class loads a local first dynamic
library to the memory.

S13, the first initiating class invokes a third interface in
the first dynamic library.

US 9,443,064 B2

5

S14, the first initiating class transfers the address of the
first cipher data in the memory to the third interface in the
first dynamic library.

S15, the third interface in the first dynamic library
decrypts the first cipher data to obtain first plain data.

S16, the third interface in the first dynamic library invokes
the define class interface of a Java virtual machine to define
the first plain data as the class loader.

In a preferred embodiment of the step S1, the process that
the first initiating class decrypts the first cipher data is
realized in a local dynamic library and the local dynamic
library is invoked by jni technology. In this way, decrypting
the class loader is completed in the local dynamic library.
Due to natural barrier of local code, it is very difficult to
decompile Java source code, further, the Java source code is
prevented from being decompiled and the Java source code
is better protected.

In order to further protect the Java source code, prefer-
ably, in the step S11, the first initiating class includes a first
interface and a second interface, and sets an intermediate
conversion interface in the process of reading the first cipher
data to the memory; Step S11 includes following step S111
to step S113:

S111, invoke the first interface in the first initiating class.

S112, the first interface in the first initiating class invokes
the second interface in the first initiating class.

S113, the second interface in the first initiating class reads
the first cipher data to the memory.

In order to further protect Java source code, preferably,
step S3 includes following step S31 to step S35:

S31, the third interface in the first dynamic library invokes
a fourth interface in the class loader.

S32, the fourth interface in the class loader reads con-
figuration file in the jar packet of Java program.

S33, the fourth interface in the class loader reads the
second initiating class from the configuration file.

S34, the fourth interface in the class loader invokes a fifth
interface in the class loader.

S35, the fifth interface in the class loader loads the second
initiating class to the memory.

In order to further protect the Java source code, prefer-
ably, step S2 includes step S21 to step S24.

S21, the fifth interface in the class loader invokes a sixth
interface in the class loader.

S22, the sixth interface in the class loader reads second
cipher data to the memory.

S23, the fifth interface in the class loader decrypts the
second cipher data to obtain second plain data.

S24, the fifth interface in the class loader invokes the
define class interface of the Java virtual machine and defines
the second plain data as a first class.

In the embodiment 1, the class loader and the first class
data is encrypted by following two ways.

The first method is hardware encryption. FIG. 2 shows a
flow chart of the encrypting method, which includes fol-
lowing step S1001 to step S1006:

S1001, invoke a dongle interface to search for whether a
dangle is connected to a computer.

S1002, when a dongle connected to the computer is found
by searching, obtain a key in the dongle; in this case the key
can be generated temporarily in the dongle or a preset key
in the dongle is obtained directly.

S1003, transfer a bytecode file into the dongle, here the
bytecode file refers to a bytecode file of the class loader or
a bytecode file of the first class.

S1004, encrypt the bytecode file by the key to obtain
cipher data.

10

15

20

25

30

35

40

45

50

55

60

65

6

S1005, invoke the dongle interface to obtain the cipher
data from the dongle.

S1006, add the cipher data to the jar packet of java
program to complete encrypting the bytecode file.

Correspondingly, decryption is implemented with a
decryption method shown in FIG. 3. As shown by FIG. 3, the
method includes following step S2001 to step S2004:

S2001, invoke dongle interface to search for whether a
dongle exists.

S2002, when the dongle is found by searching, invoke the
dongle interface and transfer the cipher data into the dongle.

S2003, invoke the dongle interface to decrypt the cipher
data transferred in by using the key stored in the dongle to
obtain plain data.

S2004, invoke the dongle interface to obtain the plain
data.

Because a hardware dongle is necessary for decryption,
and the key exists in the hardware dongle, it is impossible to
find decryption algorithm, the way of hardware encryption
has high security intensity and can provide high intensity
protection for the java source code,

The second method is software encryption, which
includes following step S1001' to step S1003'.

S1001', obtain a predetermined key or a key which is
generated temporarily; the key is fixed,

S1002', use the key to encrypt the bytecode file by an
encryption algorithm to obtain cipher data; in this case the
encryption algorithm is fixed, and preferably is, but not
limited to, 3DES.

S1003', add the encrypted bytecode file to the jar packet
of the java program.

Correspondingly, decryption can be performed by invok-
ing a decryption algorithm stored in the local dynamic
library with the third interface and plain data is obtained by
successful decryption.

For the hardware encryption, unless an attacker may
decompile the local dynamic library and obtain the decryp-
tion algorithm, java source code can not be decompiled.
Because of the natural barrier of local code, it is hard to
obtain the decryption algorithm.

Embodiment 2

The embodiment provides a protecting method of java
source code. When java program is run, in the condition that
the java program is protected already, corresponding decryp-
tion operation is performed; only if the decryption is per-
formed can the java program be run, in the condition that the
java program has not been protected, the java program can
be run directly.

Referring to FIG. 4, the protecting method includes:

Step 101, invoke initiating class of the java program;

Specifically, in the present embodiment, operating system
of a computer invokes javaw.exe initiating program; the
javaw.exe initiating program builds a java virtual machine in
the memory; the computer operating system takes the path
of jar packet of the java program as reference and transfers
the reference into the javaw.exe initiating program, for
example, javaw-jar example.jar;

The javaw.exe initiating program reads an initiating class
from a configuration file of the jar packet of the Java
program, when the java program is a protected program, the
configuration file has been amended;

Specifically, in the present embodiment, a first field has
been preset in the configuration file, the initiating class in the

US 9,443,064 B2

7

original configuration file is stored in the first field; mean-
while, the initiating class in the configuration file is modified
as the first initiating class;

Correspondingly, in the step 101 of the present embodi-
ment, the initiating class of the invoked java program is a
first initiating class and the first initiating class is written by
java language;

Step 102, invoke a first interface in the first initiating
class;

Specifically, in the present embodiment, the first interface
is main method in the first initiating class;

Step 103, the first interface invokes a second interface in
the first initiating class;

Specifically, in the present embodiment, the second inter-
face is read file method in the first initiating class; and

Step 104, the second interface reads first cipher data,
which is obtained by encrypting a bytecode file of a first
class loader, to the memory;

Specifically, in the present embodiment, the first class
loader is written by java language; the bytecode file of the
first class loader is encrypted in advance; the encryption
process specifically is implemented by hardware encryption
or software encryption.

The hardware encryption is realized by interactive opera-
tion between a hardware dangle and a computer, which is
specifically as the following:

Step 1001, an encryption program invokes a dongle
interface to search for whether a dongle is connected to the
computer, if yes, go to step 1002; otherwise, go on search-
mg;

Step 1002, the encryption program invokes the dongle
interface, generates a key in the dongle and stores the key;

Specifically, in the present embodiment, the key can be
obtained in another way, i.e. importing the key to the dongle,
and the key is fixed;

Step 1003, the encryption program transfers the bytecode
file of the first loader into the hardware dongle;

Step 1004, the encryption program invokes the dongle
interface to encrypt the bytecode file of the first class loader
transferred in by using the generated key to obtain first
cipher data;

Step 1005, the encryption program invokes the dongle
interface and obtains the first cipher data from the hardware
dongle;

Step 1006, the encryption program receives the first
cipher data and writes the first cipher data into the bytecode
file; and

Step 1007, the computer adds the encrypted bytecode file
to jar packet of the java program so as to complete the
encryption of the bytecode file of the first class loader;

The software encryption specifically includes following
steps:

Step 1001', the encryption program presets a key;

Specifically, in the present embodiment, the key is fixed;

The key can be obtained by another way, i.e. the encryp-
tion program generates a key temporarily;

Step 1002', the encryption program uses the key to
encrypt the bytecode file of the first class loader by an
encryption algorithm to obtain first cipher data;

Specifically, in the present embodiment, the encryption
algorithm is fixed;

Preferably, in the present embodiment, the algorithm is,
but not limited to, 3DES algorithm;

Correspondingly, the first dynamic library realizes
decryption algorithm;

Step 1003', the computer adds the encrypted bytecode file
of the first class loader to the jar packet of the java program;

10

15

20

25

30

35

40

45

50

55

60

65

8

Specifically, in the step 104 of the present embodiment,
the process of reading the bytecode file of the first class
loader to the memory is reading the file in arrays of the
memory in the form of data flow;

A lot of arrays are set in the memory, for example,
byte0[|, bytel[], byte2[], byte3[], and the like. Preferably,
the encrypted bytecode file of the first class loader is read in
the array byte0[| of the memory;

Step 105, the first initiating class loads the first dynamic
library to the memory;

Specifically, in the present embodiment, the first dynamic
library is written by standard C language; the first dynamic
library is added to the jar packet of the java program in
advance;

Step 106, the first initiating class invokes a third interface
in the first dynamic library by jni technology;

Specifically, in the present embodiment, the third inter-
face is run method in the first dynamic library;

Step 107, the first initiating class transfers the address of
the first cipher data, which is obtained by encrypting the
bytecode file of the first class loader, in the memory into the
third interface;

Specifically, in the present embodiment, the address of the
array byte0[| in the memory is transferred into the third
interface; the third interface invokes corresponding data in
the array byte0[| according to the address reference which
are transferred in;

Step 108, the third interface decrypts the first cipher data,
which is obtained by encrypting the bytecode file of the first
class loader; if the decrypting is successful, go to step 109;
if the decrypting is failed, jump out of the program;

Specifically, in the present embodiment, the first plain
data is obtained after successful decryption;

Corresponding to the encryption process of the step 104,
corresponding decryption process is realized by hardware
decryption or software decryption.

Hardware encryption specifically includes following
steps.

Step 2001, the third interface invokes the dongle interface
to search for whether a dongle is connected to the computer,
if yes, go to step 2002; otherwise, go on searching;

Step 2002, the third interface invokes the dongle interface
and transfers the first cipher data into the hardware dangle;

Step 2003, the third interface invokes the dangle interface
to decrypt the first cipher data transferred in by using the key
which is stored in the hardware dongle in encrypting pro-
cess; if the decrypting is successful, go to step 2004; if the
decrypting is failed, jump out of the program;

Specifically, in the present embodiment, first plain data is
obtained after successful decrypting; and

Step 2004, the third interface invokes the dongle interface
to obtain the first plain data obtained by decrypting.

Software decryption is specifically as the following:

The third interface directly invokes the decryption algo-
rithm in the first local dynamic library and decrypts the first
cipher data, if the decrypting is successful, go to step 109,
if the decrypting is failed, jump out of the program;

specifically, in the present embodiment, first plain data is
obtained after successful decrypting;

Step 109, the third interface invokes a define class inter-
face of a java virtual machine and uses the define class
interface to define the first plain data obtained by decrypting
the first cipher data as a first class loader which can be run
by the java virtual machine;

specifically, in the present embodiment, the define class
interface is define class method.

US 9,443,064 B2

9

Step 110, the third interface invokes a fourth interface in
the first class loader;

Specifically, in the present embodiment, the fourth inter-
face is run main method in the first class loader;

Step 111, the fourth interface reads out the configuration
file in jar packet of the Java program;

Step 112, the fourth interface reads out an original initi-
ating class from the configuration file;

Specifically, in the present embodiment, the original ini-
tiating class is the initiating class saved in the first field in the
configuration file;

Step 113, the fourth interface invokes a fifth interface in
the first class loader;

Specifically, in the present embodiment, the fifth interface
is loadclass method in the first class loader;

Step 114, the fifth interface loads the original class to the
memory;

In the present embodiment, step 110 to step 114 can be
executed after any step between step 109 and step 120;

Step 115, the fifth interface invokes a sixth interface in the
first class loader;

Specifically, in the present embodiment, the sixth inter-
face is readfile method in the first class loader;

Step 116, the sixth interface reads second cipher data
which is obtained by encrypting the bytecode file with suffix
of .class to the memory;

Specifically, in the present embodiment, the java program
is protected, and correspondingly, the bytecode file with
suffix of .class in the jar packet of the java program is an
encrypted file;

The way of encrypting the bytecode file with suffix of
.class is the same as the way of encryption in the step 104
and it is unnecessary to go into details here.

The jar packet of the java program has a plurality of
encrypted bytecode files, i.e. there are a plurality of second
cipher data; when the java program is run, the java virtual
machine reads one of the second cipher data as needed, and
reads the second cipher data, which is obtained by encrypt-
ing the bytecode file with suffix of .class by the fifth
interface, in the memory.

Specifically, the process of reading the data to the memory
is reading the data in an array of the memory in the form of
data flow;

there are a plurality arrays in the memory, for example,
byte0[|, bytel[|, byte2[], byte3[], etc. Preferably, the
second cipher data obtained by encrypting the bytecode file
with suffix of .class in the array bytel| | of the memory;

Step 117, the fifth interface decrypts the second cipher
data which is obtained by encrypting the bytecode file with
suffix of .class, if decrypting is successtul, go to step 118; if
decrypting is failed, jump out of the program;

Specifically, in the present embodiment, the way of
decrypting the second cipher data which is obtained by
encrypting the bytecode file with suffix of .class is the same
as the way of decrypting in above step 108, it is unnecessary
to go into details here;

Correspondingly, second plain data is obtained after suc-
cessful decrypting.

Step 118, the fifth interface invokes a define class inter-
face of the java virtual machine and the define class interface
defines the second plain data, which is obtained by decrypt-
ing the second cipher data obtained by encrypting the
bytecode file with suffix of .class, as a class that can be used
by the java virtual machine;

Specifically, in the present embodiment, the define class
interface is defineclass method;

20

30

40

45

55

65

10

Step 119, the java virtual machine uses the first class
loader to load the defined class to the java virtual machine;
and

Step 120, the java virtual machine invokes standard main
interface in the original initiating class and starts to run the
java program.

Specifically, in the present embodiment, the standard
main interface is main method in the original initiating class.

Embodiment 3

FIG. 5 shows a protecting system of Java source code
provided by embodiment 4. As shown by FIG. 5, the system
includes:

a first processing module 10 including a first initiating
class, wherein the first initiating class is an initiating class of
Java program;

an invoking module 20 configured to invoke the first
initiating class;

a second processing module 30 including a class loader;

an encrypting module 40 configured to encrypt a bytecode
file of the class loader to first cipher data and encrypt a
bytecode file of a first class to second cipher data, wherein
the first class is a class run by a Java virtual machine; and

a decrypting module 50 configured to decrypt the first
cipher data to first plain data and decrypt the second cipher
data to second plain data.

In this case the first initiating class reads the first cipher
data to the memory, controls the decrypting module 50 to
decrypt the first cipher data to obtain the first plain data and
define the first plain data as the class loader;

The class loader is configured to load a second initiating
class to the memory, read the second cipher data to the
memory, control the decrypting module 50 to decrypt the
second cipher data, and load the first class to the Java virtual
machine so that the Java virtual machine invokes the main
interface in the second initiating class to run the Java
program; in this case the second initiating class is an original
initiating class in jar packet of the Java program.

In the present embodiment, the invoking module 20
invokes the first processing module 10, i.e. the first initiating
class. Because the class loader is encrypted by the encrypt-
ing module 40, the first initiating class controls the decrypt-
ing module 50 to decrypt the first cipher data to obtain the
second processing module 30, i.e. the class loader; because
the first class is encrypted by the encrypting module 40, the
class loader controls the decrypting module 50 to decrypt the
second cipher data to obtain the first class; the class loader
loads the second initiating class to the Java virtual machine
so that the Java virtual machine can invoke the main
interface of the second initiating class to run the Java
program. Using the class loader to protect the java program
and encrypting the class loader so that an attacker can not
obtain the class loader of plain text; therefore decompiling
the source code is prevented effectively and the Java source
code is protected.

In this case, in order to further protect Java source code,
the process that the first initiating class controls the decrypt-
ing module 50 to decrypt the first cipher data is realized in
the local dynamic library; preferably, the first initiating class
is further configured to load a local first dynamic library to
the memory, invoke a third interface in the first dynamic
library and transfer the address of the first cipher data in the
memory to the third interface in the first dynamic library, in
this case, the third interface in the first dynamic library is
configured to decrypt the first cipher data to obtain the first

US 9,443,064 B2

11

plain data and invoke a define class interface of the Java
virtual machine to define the first plain data as class loader.

In order to further protect Java source code, preferably,
the first initiating class includes a first interface and a second
interface; the first interface in the first initiating class is
configured to invoke the second interface in the first initi-
ating class; the second interface in the first initiating class is
configured to read the first cipher data to the memory.

In order to further protect Java source code, preferably,
the class loader includes a fourth interface and a fifth
interface; in this case, the fourth interface in the class loader
is configured to read a configuration file in jar packet of the
Java program, read out the second initiating class from the
configuration file and invoke the fifth interface in the class
loader; the fifth interface in the class loader is configured to
load the second initiating class to the memory; and the third
interface in the first dynamic library is configured to invoke
the fourth interface in the class loader.

In order to further protect Java source code, preferably,
the class loader includes a sixth interface, in this case, the
sixth interface in the class loader is configured to read the
second cipher data to the memory; and the fifth interface in
the class loader is further configured to invoke the sixth
interface in the class loader, decrypt the second cipher data
to obtain the second plain data and invoke the define class
interface of the Java virtual machine to define the second
plain data as the first class.

Preferably, a hardware dongle is used to encrypt the first
class or the class loader. The encrypting module 40 includes:
a first searching sub-module configured to invoke a dongle
interface to search for whether a dongle is connected to the
computer; a first obtaining sub-module configured to, when
the dongle is found by searching, obtain a key in the dongle;
a first transferring-in sub-module configured to transfer the
bytecode file into the dongle; a first encrypting sub-module
configured to invoke the dongle interface and use the key to
encrypt the bytecode file to obtain the cipher data; a second
obtaining sub-module configured to invoke the dongle inter-
face to obtain the cipher data from the dongle; and a first
adding sub-module configured to add the cipher data to jar
packet in the java program to complete encrypting the
bytecode file.

Correspondingly, the decrypting module 50 includes: a
first searching sub-module configured to invoke the dongle
interface to search whether a dongle exists; a second trans-
ferring-in sub-module is configured to, when the dongle is
found by searching, invoke the dongle interface to transfer
the cipher data into the dongle; a first decrypting sub-module
configured to invoke the dongle interface and use the key
stored in the dongle to decrypt the cipher data transferred in
to obtain plain data; and a third obtaining sub-module
configured to invoke the dongle interface to obtain the plain
data.

Preferably, the first class or the class loader is encrypted
by the way of software encryption; the encrypting module
40 includes a fourth obtaining sub-module configured to
obtain a key; a second encrypting sub-module configured to
use the key to encrypt the bytecode file with an encryption
algorithm to obtain cipher data; and a second adding sub-
module configured to add the cipher data in the jar packet of
the java program to complete encrypting the bytecode file.

Correspondingly, the decrypting module 50 includes a
second decrypting sub-module configured to use the key to
decrypt the cipher data with a decrypting algorithm to obtain
plain data.

Embodiment 4

The present embodiment provides a protecting system of
java source code.

25

40

45

50

55

65

12

Referring to FIG. 6, the system includes a first processing
module 21, a second processing module 22, a third process-
ing module 23, an encrypting module 24, a decrypting
module 25 and a storing module 26.

The first processing module 21, which specifically is a
first initiating class, provides a first interface (main method)
and a second interface (readfile method), and is configured
to be invoked by java program when the java program runs;
the first initiating class is written by java language.

The second processing module 22, which specifically is a
local first dynamic library, provides a third interface (run
method) and configured to be invoked by the java program
when the java program runs; the first dynamic library is
written by standard C language;

The third processing module 23, which is specifically a
first class loader, provides a fourth interface (runmain
method), a fifth interface (loadclass method) and a sixth
interface (readfile method) which are invoked by the java
program when the java program runs; the first class loader
is written by java language;

the encrypting module 24 is configured to encrypt the
bytecode file of the first class loader in the third processing
module 23 to obtain first cipher data;

and the encrypting module 24 is configured to encrypt
each bytecode file with suffix of .class in jar packet of the
java program to obtain second cipher data;

the decrypting module 25, is configured to decrypt the
first cipher data, which is obtained by encrypting the byte-
code file of the first class loader in the encrypting module 24,
to obtain first plain data;

and the decrypting module 25 is configured to decrypt the
second cipher data, which is obtained by encrypting the
bytecode file with suffix of .class in the encrypting module
24, to obtain second plain data;

the storing module 26 includes a first storing unit 261 and
a second storing unit 262;

the first storing unit 261 is configured to store the byte-
code file in the jar packet of the java program;

the bytecode file includes bytecode file with suffix of
.class, configuration file and the like.

the first storing unit 261 is configured to store the
encrypted bytecode file with suffix of .class in the jar packet
of java program;

and the first storing unit 261 is configured to store
modified configuration file;

the second storing unit 262 is configured to store a
predetermined key and encryption and decryption algo-
rithms.

From what is described above, it can be seen that the
embodiment of the present disclosure realizes following
technical effect: an encrypted class loader is used to protect
the java program and two times of decryption is performed
when the java program runs, which prevents an attacker
from obtaining the class loader of plain text so as to realize
effective protection of Java source code.

It should be noted that steps shown by a flow chart of
accompanying drawings can be executed in operating sys-
tem of a set of computer-executable instructions; and though
logic sequence is shown in the flow chart, however, in some
situations, the shown or described steps can be executed in
a sequence which is different from the above sequence.

Evidently, those skilled in the art shall appreciate that the
respective modules or steps of the disclosure may be imple-
mented by a general-purposed computing device and may be
integrated on a single computing device or distributed over
a network consisted of a plurality of computing devices.
Optionally, they may be implemented using program codes

US 9,443,064 B2

13

executable by the computing device so that they may be
stored in a storage device for execution by the computing
device or they may be implemented by fabricating them into
integrated circuit modules respectively or by fabricating
some modules or steps of them into a single integrated
circuit module. Thus, the disclosure is not limited to any
specific combination of hardware and software.

The foregoing descriptions are merely illustrative of the
preferred embodiments of the disclosure but not intended to
limit the scope of the disclosure, and various modifications
and variations which may be made to the disclosure will
occur to those skilled in the art. Any modifications, equiva-
lent alternatives and adaptations in light of the spirit and
principle of the disclosure shall fall within the scope of the
disclosure

What is claimed is:

1. A protecting method of Java source code, wherein when
a first initiating class is invoked, the method comprises:

S1, the first initiating class reading first cipher data to a
memory, decrypting the first cipher data to obtain first
plain data, and defining the first plain data as a class
loader, wherein the first initiating class is an initiating
class of Java program and the first cipher data is data
obtained by encrypting the bytecode file of the class
loader;

S2, the class loader reading second cipher data to the
memory, decrypting the second cipher data to obtain
second plain data, and defining the second plain data as
a first class, wherein the first class is a class which is
run by a Java virtual machine, and the suffix of the first
class is .class, and the second cipher data is obtained by
encrypting the bytecode file of the first class;

S3, the class loader loading a second initiating class to the
memory, wherein the second initiating class is an
original class in jar packet of Java program; and

S4, the class loader loading the first class to the Java
virtual machine so that the Java virtual machine can
invoke a main interface in the second initiating class
and run the Java program,

wherein the step S1 comprises:

S11, the first initiating class reading the first cipher data
to the memory;

S12, the first initiating class loading a local first dynamic
library to the memory;

S13, the first initiating class invoking a third interface in
the first dynamic library;

S14, the first initiating class transferring an address of the
first cipher data in the memory into the third interface
in the first dynamic library;

S15, the third interface in the first dynamic library
decrypting the first cipher data to obtain the first plain
data; and

S16, the third interface in the first dynamic library invok-
ing a define class interface of the Java virtual machine
to define the first plain data as the class loader.

2. The method of claim 1, wherein the step S11 comprises:

S111, invoking a first interface in the first initiating class;

S112, the first interface in the first initiating class invoking
a second interface in the first initiating class; and

S113, the second interface in the first initiating class
reading the first cipher data to the memory.

3. The method of claim 1, wherein the step S3 comprises

S31, the third interface in the first dynamic library invok-
ing a fourth interface in the class loader;

S32, the fourth interface in the class loader reading a
configuration file in jar packet of the Java program;

S33, the fourth interface in the class loader reading out the
second initiating class from the configuration file;

S34, the fourth interface in the class loader invoking a
fifth interface in the class loader; and

5

10

20

25

30

35

40

45

50

55

60

65

14

S35, the fifth interface in the class loader loading the
second initiating class to the memory.

4. The method of claim 3, wherein the step S2 comprises:

S21, the fifth interface of the class loader invoking a sixth
interface in the class loader;

S22, the sixth interface in the class loader reading the
second cipher data to the memory;

S23, the fifth interface in the class loader decrypting the
second cipher data to obtain second plain data; and
S24, the fifth interface in the class loader invoking the
define class interface of the Java virtual machine and

defining the second plain data as the first class.

5. The method of claim 1, wherein decrypting the first

cipher data and the second cipher data in the following ways:

S2001, invoking a dongle interface to search whether a
dongle exists;

S2002, when the dongle is found by searching, invoking
the dongle interface to transfer cipher data into the
dongle;

S2003, invoking the dongle interface to use a key stored
in the dongle to decrypt the cipher data, which is
transferred in, to obtain plain data; and

S2004, invoking the dongle interface to obtain the plain
data.

6. A protecting system of Java source code, executed by
a computer device, the computer device comprises a pro-
cessor and a memory, comprising:

a first processing module comprising a first initiating
class, wherein the first initiating class is an initiating
class of Java program;

an invoking module configured to invoke the first initi-
ating class; and

a second processing module comprising a class loader;

an encrypting module configured to encrypt a bytecode
file of the class loader to first cipher data and encrypt
a bytecode file of a first class to second cipher data,
wherein the first class is a class run by a Java virtual
machine; and

a decrypting module configured to decrypt the first cipher
data to first plain data and decrypt the second cipher
data to second plain data,

wherein the first initiating class is configured to read the
first cipher data to the memory, and control the decrypt-
ing module to decrypt the first cipher data to obtain the
first plain data and define the first plain data as the class
loader; and

the class loader configured to load a second initiating
class to the memory, read the second cipher data to the
memory, control the decrypting module to decrypt the
second cipher data and load the first class to the Java
virtual machine so that the Java virtual machine can
invoke a main interface of the second initiating class to
run the Java program, wherein the second initiating
class is an original class of jar packet of the Java
program,

wherein the first initiating class is further configured to
load a local first dynamic library to the memory, invoke
a third interface in the first dynamic library and transfer
the address of the first cipher data in the memory into
the third interface in the first dynamic library,

wherein the third interface in the first dynamic library is
configured to decrypt the first cipher data to obtain the
first plain data and invoke a define class interface of the
Java virtual machine to define the first plain data as the
class loader.

7. The protecting system of claim 6, wherein

the first initiating class comprises a first interface and a
second interface, wherein the first interface in the first
initiating class is configured to invoke the second
interface in the first initiating class; the second interface

US 9,443,064 B2

15 16
in the first initiating class is configured to read the first the second cipher data to obtain the second plain data,
cipher data to the memory. and invoke the define class interface of the Java virtual
8. The protecting system of claim 6, wherein machine to define the second plain data as the first
the class loader comprises a fourth interface and a fifth class.

interface, wherein the fourth interface of the class s
loader is configured to read a configuration file in the
jar packet of the Java program, read the second initi-

10. The protecting system of claim 6, wherein the decrypt-
ing module comprises:

ating class out from the configuration file and invoke a second §earching sub-module configured to inyoke a

the fifth interface in the class loader; the fifth interface dongle interface to search whether a dongle exists;

in the class loader is configured to load the second o @ second transferring-in sub-module configured to, when

initiating class to the memory; and the dongle is found by searching, invoke the dongle
the third interface in the first dynamic library is further interface to transfer cipher data into the dongle;

1conéigured to invoke the fourth interface in the class a first decrypting sub-module configured to invoke the

oader.

dongle interface to use the key stored in the dongle to
15 decrypt the cipher data, which is transferred in, to
obtain plain data; and

9. The protecting system of claim 8, wherein

the class loader comprises a sixth interface, wherein the
sixth interface in the class loader is configured to read
the second cipher data to the memory; and

the fifth interface in the class loader is further configured
to invoke the sixth interface in the class loader, decrypt L

a third obtaining sub-module configured to invoke the
dongle interface to obtain the plain data.

